ALG: Anillos y cuerpos

El pasado día se introdujo los grupos, hoy hablaremos de Anillos y Cuerpos. Un anillo es una terna (A, +, •), donde A es un conjunto no vacío y + y • son operaciones internas en A, en donde (A, +) es un grupo abeliano y • es una operación asociativa y distributiva bilátera respecto… Seguir leyendo ALG: Anillos y cuerpos

ALG: Relaciones, operaciones internas y grupos

Cuando trabajamos con conjuntos tratamos de buscar características que puedan equipara unos con otros, para eso definimos unos tipos de conjuntos especiales, que cumplen determinadas propiedades. Con este fin comenzamos por definir una ley de composición interna, u operación interna, en un conjunto, utilizando las relaciones de equivalencia: Relaciones de equivalencia Por ejemplo “Tener el… Seguir leyendo ALG: Relaciones, operaciones internas y grupos

EFM: ED de segundo orden

Analizamos las ecuaciones diferenciales de segundo orden y, para estudiar unos casos sencillos, empezaremos con la resolución de dos tipos de ellas: ecuaciones sin variable dependiente ecuaciones sin variable independiente Para el primer tipo, ecuaciones de la forma $F(x,y’,y”)=0$, hacemos el cambio $y’=p$, y, $y”=\frac{dp}{dx}$, obteniendo una función de primer orden $f(x,p,p’)=0$. Ejercicio: Resolver la… Seguir leyendo EFM: ED de segundo orden

EFM: ED de Bernoulli

Las ecuaciones diferenciales de Bernoulli son ecuaciones diferenciales ordinarias de primer orden, formuladas por Jakob Bernoulli y resueltas por su hermano Johann, que se caracterizan por tener la forma: $$\frac{dy}{dx}+P(x)y=Q(x)y^\alpha$$ donde P(x) y Q(x) son funciones continuas en un intervalo. Para resolverlas es suficiente con plantear el cambio de variable $u=y^{1-\alpha}$, transformando la ecuación diferencial… Seguir leyendo EFM: ED de Bernoulli

ALG: Inducción matemática

Hoy hemos incidido en la inducción matemática. Recordemos que el razonamiento para demostrar una proposición cualquiera mediante el esquema de inducción matemática es como sigue. Llamemos $P_n$ a la proposición, donde $n$ es el rango. Se demuestra que $P_0$, el primer valor que cumple la proposición (iniciación de la inducción), es cierta. Se demuestra que… Seguir leyendo ALG: Inducción matemática

ALG: Conjuntos y Aplicaciones

Comenzamos el tema de Conjuntos y aplicaciones dando la definición de conjuntos con los que trabajaremos y otras definiciones y propiedades, como Conjuntos: Subconjunto, partes de un conjunto, cardinalidad Unión e Intersección de conjuntos propiedades Aplicaciones: Relación. Dominio, rango e imagen. Aplicación inyectiva. Aplicación suprayectivas. Aplicación biyectivas. Lectura recomendada: ÁLGEBRA BÁSICA, Conjuntos y Estructuras Algebraicas,… Seguir leyendo ALG: Conjuntos y Aplicaciones

ALG: Criptografía basada en matrices

Hoy hemos visto cómo podemos utilizar las matrices para codificar un mensaje. En 1929, Lester S. Hill publicó un artículo en el que enseñaba a cómo utilizar el álgebra lineal para construir un sistema criptografico polialfabético que era práctico para trabajar con mas de tres símbolos simultaneamente. Este sistema polialfabético permitía dar un mismo caracter… Seguir leyendo ALG: Criptografía basada en matrices

EFM: ED lineales de primer orden

p>El pasado día decíamos que la ecuación diferencial $P( x, y)\, dx + Q(x, y)\, dy = 0$ era exacta si $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$. Aprendimos a resolver este tipo de ecuaciones. Sin embargo podemos toparnos con ecuaciones que no lo cumplan, pero que al multiplicarles determinada función, $\mu$, verifique $$\frac{\partial \mu P}{\partial y}=\frac{\partial… Seguir leyendo EFM: ED lineales de primer orden

ALG: Factorización PA=LU

El pasado día vimos la factorización LU de una matriz cuadrada; es decir, conseguir descomponer $A$ en un producto $$A=L\,U,$$ de manera que $U$ triangular superior y $L$ sea triangular inferior con su diagonal principal todo unos. Para hacerlo seguíamos el proceso de trasformaciones elementales $$[I|A]~[L^*|U],$$ donde $U$ es la matriz triangular superior que perseguimos… Seguir leyendo ALG: Factorización PA=LU

ALG: Factorización LU

p>La factorización LU es una forma de factorización de una matriz como el producto de una matriz triangular inferior y una superior. El propósito es dada una matriz $A$ conseguir descomponer esta en un producto $$A=L\,U,$$ de manera $L$ sea triangular inferior y $U$ triangular superior. Recordad que una operación elemental entre filas se puede… Seguir leyendo ALG: Factorización LU