ALG: Matriz asociada a una aplicación lineal

Dada una aplicación lineal, $f:V\to W$, entre dos espacios vectoriales definimos la matriz asociada de la aplicación respecto de una base $B_V\subseteq V$ como la matriz cuyas columnas son las coordendas respecto de otra base $B_W\subseteq W$ de las imágenes de los vectores de $B_V$; es decir, si $B_V=\{\vec{v}_1,\ldots,\vec{v}_n\}$, $B_W=\{\vec{w}_1,\ldots,\vec{w}_m\}$, y $$ \begin{matrix} f(\vec{v}_1)=k_{11}\vec{w}_1+k_{21}\vec{w}_2+k_{31}\vec{w}_3+\ldots+k_{m1}\vec{w}_m;\\ f(\vec{v}_2)=k_{12}\vec{w}_1+k_{22}\vec{w}_2+k_{32}\vec{w}_3+\ldots+k_{m2}\vec{w}_m;\\… Seguir leyendo ALG: Matriz asociada a una aplicación lineal