Siguiendo con los métodos de resolver ED, definimos las funciones homogéneas. Una función $f: D \subset \mathbb{R}^2 \rightarrow \mathbb{R}$, se se dice homogénea de grado $n$ si $$f(tx,ty) = t^n f(x,y)$$ para todo $t > 0$ y todo $(x,y) \in D$. Utilizando las funciones homogéneas podemos ver que si en $$y’=f(x,y),$$ la función $f(x,y)$ es… Seguir leyendo EFM: ED homogéneas