En este curso trataremos una forma diferencia exacta como una expresión del tipo $$M(x,y)dx+N(x,y)dy=0.$$ En determinados casos esta ecuación se puede tratar como una ecuación diferencia de variables separadas. Si la forma es: $$F_1(x)G_2(y)dx+F_2(x)G_1(y)dy=0,$$ resulta que $$\frac{G_1(y)}{G_2(y)}dy=-\frac{F_1(x)}{F_2(x)}dx,$$ que se puede tratar como la ecuaciones que ya hemos visto Ejercicio: Resolver la ED, $(1+x^4)dy+x(1+4y^2)dx=0, \; y(1)=0$.