Recordemos que partimos de un sistema de ED en la forma matricial $$X’=A\,X+B(t),$$ donde consideraremos $A$ una matriz cuadrada de valores constantes, y $B(t)$ una matriz de valores constantes o funcionales, no siendo todos cero. Si resulta que la solución de la parte homogénea la podemos obtener como $$X_h=\Phi(t)\,C,$$ siendo $C$ la matriz de constantes,… Seguir leyendo EFM: Sistemas no homogéneos. Variación de parámetros
Autor: admin
EFM: Sistemas no homogéneos. Coeficientes indeterminados
Los métodos de coeficientes indeterminados y de variación de parámetros que se utilizaron para encontrar soluciones particulares de ecuaciones diferenciales ordinarias lineales no homogéneas pueden adaptarse a la resolución de sistemas lineales no homogéneos. De estos dos métodos, la variación de parámetros es la técnica más eficaz. No obstante, hay casos donde el método de… Seguir leyendo EFM: Sistemas no homogéneos. Coeficientes indeterminados
ALG: Intersección, incidencia y paralelismo
En este día hemos tratado la posición relativa de dos variedades afines: $L_1=P+C_1$ y $L_2=Q+C_2$. Diremos que se cortan si el conjunto $L_1\cap L_2$ no es vacío. Si $L_1\cap L_2=\phi$; es decir, si no se cortan, puede ocurrir que $C_1\subseteq C_2$ (o $C_2\subseteq C_1$ ) en cuyo caso se dice que son paralelas; en caso… Seguir leyendo ALG: Intersección, incidencia y paralelismo
ALG: Teorema de Rouché-Fröbenius
Recordad que todo sistemas de ecuaciones los podemos formular mediante una ecuación matricial $$AX=B,$$ donde $A$ es la matriz de coeficiente y $B$ la matriz de términos independientes. Llamamos matriz ampliada del sistema a la matriz que concatena $A$ y$ B$, ($A|B$) . El Teorema de Rouché-Fröbenius nos afirma que Existen soluciones para el sistema… Seguir leyendo ALG: Teorema de Rouché-Fröbenius
EFM: Sistemas con autovalores complejos
Por último tenemos que la solución de $p_A(\lambda)=0$ sea compleja; es decir, $\lambda=\alpha\pm \beta i$, en ese caso la solución general será de la forma $$X=c_1\vec{v}e^{\lambda t}+c_2\bar{\vec{v}}e^{\bar{\lambda} t},$$ donde $\bar{\lambda}$ es el conjugado de $\lambda$ y $\bar{\vec{v}}$ es el vector conjugado del vector propio $\vec{v}$. Esta forma también se puede expresar utilizando los senos y… Seguir leyendo EFM: Sistemas con autovalores complejos
ALG: Variedades y Sistemas de Ecuaciones
Ampliamos las definiciones de variedades lineales que, en muchos casos, las equiparamos con los subespacios vectoriales, aunque no tienen por que serlos, a $\mathbb{R}^n$ Las variedades lineales nos dan pie para definir las ecuaciones paramétricas e implícitas que las identifican. Además hemos introducido el espacio afín y con él la variedad afín, una forma de… Seguir leyendo ALG: Variedades y Sistemas de Ecuaciones
ALG: Producto escalar, norma, producto vectorial y mixto
Hoy hemos trabajado con la definición del producto escalar y norma en $\mathbb{R}^2$ y $\mathbb{R}^3$, aunque por extensión se puede hacer para $\mathbb{R}^n$. Estas definiciones nos dan pie a definir el ángulo entre dos vectores y el concepto de perpendicularidad. Además definimos el producto vectorial de dos vectores no nulos de $\mathbb{R}^3$, estudiando propiedades que… Seguir leyendo ALG: Producto escalar, norma, producto vectorial y mixto
ALG: el plano afín $\mathbb{R}^2$ y el espacio afín $\mathbb{R}^3$
Hoy comenzamos intentando definir un espacio donde podamos fijar los vectores de $\mathbb{R}^2$ o $\mathbb{R}^3$ de forma que en vez de vectores libres tengamos vectores fijos. Eso se conseguirá en el espacio afín. Podemos definir el plano afín $\mathbb{R}^2$ como el conjunto $\mathbb{R}^2$, considerado como puntos en el plano cartesiano, y el conjunto $\mathbb{R}^2$, como… Seguir leyendo ALG: el plano afín $\mathbb{R}^2$ y el espacio afín $\mathbb{R}^3$
EFM: Sistemas con autovalores dobles
Recordad que llevamos visto cuando todos los autovalores son distintos. Para los demás casos, empezaremos con $A\in\mathcal{M}_2(\mathbb{R})$, de este modo el polinómio característico de esta matriz será $p_A(\lambda)\in\mathbb{R}_2[X]$. Las soluciones dependerán de los valores propios que nos de la ecuación característica $p_A(\lambda)=0$. Si los valores propios son distintos estamos en el caso general, visto anteriormente.… Seguir leyendo EFM: Sistemas con autovalores dobles
EFM: Sistema de ED
Hoy comenzamos el tema 6, dedicado a los sistemas de ecuaciones diferenciales. En general un sistema como $$X’=AX+B,$$ escrito en forma matricial. A y B son una matrices de funciones, aunque nosotros nos centraremos cuando A sea una matriz de coeficientes constantes y reales. Para tratar los Sistemas de ED necesitamos repasar el cálculo de… Seguir leyendo EFM: Sistema de ED