ALG: Matriz inversa

En el día de hoy tratamos de encontrar la inversa de una matriz(cuando existe, claro). Recordad que definimos la inversa de una matriz cuadrada $A=[a_{ij}]\in \mathcal{M}_{n}(\mathbb{R} o \mathbb{C})$ como la matriz $B=[b_{ij}]\in \mathcal{M}_{n}(\mathbb{R} o \mathbb{C})$ tal que $$AB=BA=I_n.$$ El procedimiento que damos para calcular la inversa, es el de realizar operaciones elementales entre filas o… Seguir leyendo ALG: Matriz inversa

ALG: Semejanza por operaciones elementales en matrices

Hoy comenzamos definiendo semejanza de matrices por transformaciones elementales: Tomemos $\mathbb{K}$ el cuerpo $\mathbb{R} o \mathbb{C}$, y consideremos $A=[a_{ij}]\in \mathcal{M}_{m\times n}(\mathbb{K})$ una matriz y $A(f_i)=[a_{i1}\ldots a_{i,n}]$ ($A(c_i)=[a_{i1}\ldots a_{i,m}]’$) una de las filas (columnas) de la matriz. Sea $B=[b_{ij}]\in \mathcal{M}_{m\times n}(\mathbb{K})$ la matriz tal que $b_{ij}=a_{ij}$ salvo los elementos de la fila $B(f_i)=[b_{i1}\ldots b_{i,n}]$ ($B(c_i)=[b_{i1}\ldots b_{i,m}]’$)… Seguir leyendo ALG: Semejanza por operaciones elementales en matrices

ALG: Matrices

Comenzamos con el tema de Matrices. Lo primero será definir las matrices: Definición Matriz columna, matriz fila Matriz: traspuesta, identidad, cuadrada, triángular… Operaciones con matrices Suma de matrices Multiplicación de escalar por matriz. Con estas operaciones se cumple: Consideremos $\lambda,\mu\in \mathbb{K}$ y $A,B,C\in M_{m\times m}(\mathbb{K})$, siendo $\mathbb{K}$ el conjunto de los números reales o complejos,… Seguir leyendo ALG: Matrices

ALG: Presentación

En la presentación del día de hoy hemos visto Presentación Objetivos de la asignatura Metodología y Evaluación Bibliografía Objetivos, Metodología y Evaluación Se detallan en la guía que podéis encontrar en guía de Grado .   Bibliográfica Básica Grossman, “Álgebra Lineal”, McGraw-Hill, 2008 www.ingebook.com Aconsejable Jorge Arvesu y otros, Problemas resueltos de Álgebra lineal. Thomson,… Seguir leyendo ALG: Presentación