El pasado día vimos cómo calculábamos los autovalores, las soluciones de la ecuación que plantea el determinante $$p_A(\lambda)=det(A-\lambda\, I),$$
El polinomio $p_A(\lambda)$ es el polinomio característico de $A$.
Cada valor propio tiene asociado un conjunto $\mathcal{C}_\lambda=\{\vec{v}\in\mathbb{K}^n|A\vec{v}=\lambda\vec{v}\}$, que se determina resolviendo el sistema homogéneo $(A-\lambda\, I)\vec{x}=\vec{0}$. Las soluciones de estos sistemas serán los vectores propios de la matriz.
Así al número de veces que un autovalor λ se repite como raíz del polinomio característico se le llama multiplicidad algebraica y se representa por $m_a(\lambda)$. Y al número máximo de autovectores linealmente independientes que tiene asociado un autovalor λ, es decir la dimensión del subespacio propio $\mathcal{C}_\lambda$, se le llama multiplicidad geométrica de λ y se representa por $m_g(\lambda)$. Estos dos números están relacionados por una desigualdad: $$m_g(\lambda)\leqslant m_a(\lambda)$$
| Ejercicio: Calcula los vectores propios de la matriz real $$\begin{bmatrix} 0 & 1 & -1 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$ |