ALG: Matrices ortogonales

Definimos las aplicaciones ortogonales a las aplicaciones de un espacio vectorial con producto escalar $(\mathcal{E},\bullet)$ que conservan el producto escalar; es decir, $f:\mathcal{E}\to \mathcal{E}$, es ortogonal si $$f(\vec{x})\bullet f(\vec{y})=\vec{x}\bullet \vec{y},\quad\forall\,\vec{x}, \vec{y}\in\mathcal{E}$$ Propiedades que cumple una aplicación ortogonal: Es lineal Conserva la norma; es decir, $||f(\vec{x})||=||\vec{x}||$ Dos vectores son ortogonales si, y solo si, sus imágenes… Seguir leyendo ALG: Matrices ortogonales